If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5+15x=0
a = 3; b = 15; c = +5;
Δ = b2-4ac
Δ = 152-4·3·5
Δ = 165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{165}}{2*3}=\frac{-15-\sqrt{165}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{165}}{2*3}=\frac{-15+\sqrt{165}}{6} $
| r^2-2r+19=0 | | (1.05^x)=1.5 | | 7x+4=13x-4 | | x²+8x=6x+3 | | 4+x=59 | | 40(x)+10(1.5x)=1000 | | (20+x)(-40+x)=2700 | | (b-2)2/5=1.2 | | (2-b)2/5=1.2 | | 1.2=2/5(b-2)(2-b)2/5=1.2 | | -54=-3(y+8) | | 60+7+13y-17=180 | | 6-6x=5-9x-6 | | 42=3x-6 | | 2(3x+7)=4(x-5)+2x | | 40=4w+8 | | 5.4g+9=2.4g+18. | | 1(-4y+-5)=-17 | | 1066*2=x | | -4+3y=0 | | F(×)=8-2x | | 8(v+23)=-72 | | 3x+3x+3x+x-9x=16 | | │2x-11│=11 | | 3x+3x+3x+x−9x=16 | | 56=8(d+6) | | 6v-5v+6v=7 | | 6v−5v+6v=7 | | 3+x+4+1=19 | | 17t+4t−5t−13t=18 | | 20t-10t=20 | | 2x+3=7x=-24 |